Sleep dysfunction, diabetes, and pain: A troublesome triad

Critical to helping patients break the stranglehold of these 3 comorbidities is an understanding of how they interact with one other.

Victor Rosenfeld, MD
SouthCoast Health
Savannah, Ga

Sleep dysfunction, diabetes mellitus, and pain are overlapping conditions that clinicians see daily. Consider these statistics: As many as 70% of Americans have complaints about their sleep. Diabetes is a national epidemic; 8% of the US population has it (a 10-fold increase from 1960) and another 25% has prediabetes. Chronic pain is thought to occur in 15% of the population. Research increasingly substantiates the overlap and interaction among these 3 comorbidities.

The increasing incidences of sleep disorders, diabetes, and chronic pain underscore the need to approach these conditions with new insights regarding their interconnectedness. Such knowledge enables us to better understand how a patient’s comorbidities influence each other. Understanding these interrelationships will also help physicians and other providers thoroughly assess a patient’s clinical profile and develop a comprehensive treatment strategy that will improve outcomes—including quality of life.

Disclosure
The author reported no potential conflict of interest relevant to this article.
Sleep dysfunction and diabetes:
An underrecognized association

Diabetes-related nocturia or pain from diabetic peripheral neuropathy (DPN) can worsen sleep or cause sleep loss. We also know that sleep dysfunction increases consumption of sugary foods,7 which, in patients with diabetes and prediabetes will lead to worsening control of hemoglobin A1c (HbA1c). Sleep deprivation is also linked with prediabetes. In addition, lack of adequate sleep or fractured sleep is related to weight gain, and weight gain can worsen insulin resistance and glucose intolerance.

Obstructive sleep apnea (OSA)—all too often missed.
Fifty percent of men and 20% of women with type 2 diabetes have OSA; 97% of obese patients with diabetes are thought to have OSA.8 Despite these staggering numbers, up to 85% of sleep apnea cases go undiagnosed.9 Interestingly, OSA may have a causal role in the development of diabetes.10 Worsening diabetes in patients with OSA has been attributed to such mechanisms as11,12:
• intermittent hypoxia (reduces insulin sensitivity)
• increased sympathetic activity with a rise in norepinephrine (NE) level
• increased hepatic glucose and muscle glycogenolysis
• lipolysis leading to a rise in free fatty acids (insulin resistance)
• a substantial increase in cortisol secretion
• increased glucagon and glucocorticoids
• an adipose leptin increase
• increased levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α.

Through these mechanisms, OSA is associated with insulin resistance independent of obesity,11 depicted in FIGURE 1.13

Treatment of OSA with continuous positive airway pressure (CPAP) has been shown to improve diabetes control and reduce insulin needs (FIGURE 2).14 Sleep practitioners should also be aware of the interrelationship of OSA and diabetes, because 30% of patients presenting to a sleep clinic have impaired glucose tolerance or diabetes, of which 40% are undiagnosed.15 (See page S22 to read how one patient’s comorbidities were managed in “Case: Providing pain relief to a patient with diabetes, neuropathic pain, and obstructive sleep apnea.”)

The International Diabetes Foundation has recommended that everyone with type 2 diabetes be screened for sleep apnea.16 This does not mean everyone with type 2 diabetes needs to undergo a formal polysomnography study.

After an oral glucose tolerance test, obese patients with OSA (n = 30) exhibited higher serum levels of glucose and insulin than patients with obesity alone (n = 27) or normal subjects (n = 20) in a study conducted in Italy.

NS, normal subjects; OB, obesity; OSAS, obstructive sleep apnea (syndrome).

Source: Tassone F, et al.13

In patients with diabetes and a documented sleep disorder (n = 25), CPAP therapy consistently lowered glucose levels after meals, with the recommended duration of >4 hours yielding superior results.

CPAP, continuous positive airway pressure.

Source: Babu AR, et al.14
But awareness of the comorbidity of diabetes and OSA should prompt an inquiry about sleepiness, snoring, and witnessed apnea and, if clinically indicated, referral for further testing or treatment.

Diabetes and pain: Focus on glycemic control

Sixty percent to 70% of patients with diabetes have some form of neuropathy, and it is particularly common in patients who have had diabetes for >25 years. Neuropathy is painful for >30% of patients with diabetes, but it can also produce tingling and numbness. And some patients with neuropathy are asymptomatic. Diabetic neuropathy can affect every organ system and can occur in various forms.

Causes of DPN are multifactorial and include such metabolic factors as high glucose, high fat, or low insulin; neurovascular factors that result in damage to vessels carrying oxygen and nutrients to the nerves; autoimmune factors that produce neurotoxic inflammation; mechanical injuries, most commonly carpal tunnel syndrome at the wrists and ulnar nerve entrapment at the elbows; and lifestyle factors, such as smoking and alcohol use. Exact mechanisms can vary and are thought to include polyol pathway activation, protein kinase C activation, oxidative stress, poly(ADP-ribose) polymerase activation, alteration in neurotrophic factors, advanced glycation end product formation, and essential fatty acid abnormalities.

Treatment of diabetic neuropathy begins with tight glucose control, which has been shown to slow the progression of DPN. Several medication options are also available (TABLE).17-22 Tricyclic antidepressants, such as amitriptyline, desipramine, and nortriptyline, are inexpensive and effective in reducing the pain of DPN. But they can cause dry mouth, constipation, and sedation.

Duloxetine, a serotonin-norepinephrine reuptake inhibitor (SNRI), is approved by the US Food and Drug Administration (FDA) for DPN and is usually helpful at 60 mg daily. Nausea occurs in a third of patients. Duloxetine may act by improving neurotransmitter function in the periaqueductal gray matter and descending pain inhibitory pathways.

Anticonvulsants are commonly prescribed for patients with DPN. Carbamazepine was used for many years with success, but it can cause sedation and hyponatremia. Gabapentin, in the so-called gabanoid class, is usually taken in a dosage of 100 to 600 mg tid, but clinicians should watch for sedation, edema, and weight gain. Another gabanoid, pregabalin, has a similar adverse effect profile and is FDA approved for DPN; the usual dosage is 50 to 200 mg tid. Pregabalin is an α2-γ calcium channel blocker and likely mediates its effects through reduction in substance P levels.

Opioids such as oxycodone or opioid-like drugs such as tramadol can also be used sparingly. High-potency narcotics are not recommended.

Supplementation with α-lipoic acid 100 mg bid has been shown to reduce diabetic neuropathy deficits. Metanx, a vitamin-B–derived supplement, is FDA approved for DPN.

Pain and sleep dysfunction: Ask the right questions

While chronic pain affects 15% of the general population, its prevalence rises to >50% among older adults. In chronic pain patients,
Patients enter a vicious cycle wherein pain interferes with sleep, and lack of proper sleep worsens pain.

>50% complain of poor or “unrefreshing” sleep, diminished or fragmented sleep, and increased pain. Consequently, patients enter a vicious cycle wherein pain interferes with sleep, and lack of proper sleep worsens pain. Many chronic pain disorders commonly affect sleep: back pain, headache, facial pain and temporomandibular joint disorder, musculoskeletal pain, fibromyalgia syndrome, and premenstrual dysphoric disorder. Also, many pain medications used for these conditions can fragment sleep. Investigating patients’ sleep and pain connection starts with a thorough history of their sleep patterns. Do they have a sleep disorder, such as sleep apnea, restless legs syndrome, insomnia, or hypersomnia? Do they have circadian issues, such as advanced or delayed sleep phase, or do they do shift work? It is now known that, compared with those who work during customary daytime hours, shift workers have higher morbidity and mortality and increased risk of cancer, cardiovascular disease, mental illness, and gastrointestinal disturbances.

How old are their pillows and mattress? Mattresses should probably be replaced at least every 7 to 8 years. Modern adjustable mattresses and various memory foams can improve...
sleep for patients with chronic musculoskeletal complaints.

Is their sleep environment safe, quiet, clean, and comfortable? Sleep hygiene issues, such as having a computer in the bedroom or sleeping with a TV on, drinking too much caffeine, not having a wind-down ritual, minimizing the need for at least 7 hours of sleep nightly, or obsessing about sleep can all adversely affect sleep. Cognitive-behavioral therapy can usually correct refractive sleep hygiene issues.

Many medications can interfere with sleep, including antidepressants, stimulants, and β-blockers. Sedatives commonly prescribed for insomnia will worsen deep restorative sleep over time.

Lastly, do patients have a routine exercise program or adequate stress-coping mechanisms? Consider all of these issues when addressing chronic pain and sleep complaints. If patients are at risk for sleep-disordered breathing, such as sleep apnea, or complain of hypersomnia, refer them to a sleep specialist for formal sleep testing.

The importance of sleep architecture
Most people need to sleep 7 to 8 hours to feel rested. Some people need more or can do with less sleep, but inadequate (<4 hours) and excessive (>9 hours) sleep have both been associated with increased morbidity and mortality.

Sleep is a highly regimented and organized series of altered states. Light sleep, stages 1 and 2, constitutes about 50% of sleep and is scattered throughout the night. Deep sleep (stages 3 and 4), which is thought to be restorative for the body and especially important for pain processing, constitutes around 25% of sleep by the fourth decade of life and is clustered only in the first 4 to 5 hours of sleep. People with chronic pain, such as patients with fibromyalgia or the elderly, typically have less than 5% deep sleep. What is not clear is whether the lack of deep sleep is the cause or the effect of chronic pain. Most likely the relationship is reciprocal, a negative-feedback loop wherein pain affects sleep and lack of deep sleep affects pain.

Rapid eye movement (REM) sleep, the state associated with dreaming, constitutes approximately 25% of sleep and is clustered in the morning hours. Although the purpose of REM sleep is not entirely clear, it appears to be important for such mental processing as mood stabilization and memory consolidation. Depressed patients usually have more REM periods and start them earlier in the night, which interferes with deep sleep. Most antidepressants reduce REM sleep.

Both deep sleep and REM sleep appear to be helpful in “resetting” pain thresholds. In particular, length and quality of deep sleep correlate inversely with pain. The mechanism of interaction between pain and sleep is not clear but may involve 5-HT serotonin receptors, NE release, and substance P neuropeptide regulation.

As mentioned, many pain and sleep medications can interfere with normal sleep architecture. Because of the connection between deep sleep and pain, investigative approaches have used sodium oxybate, which significantly increases deep sleep. Sodium oxybate is FDA approved for narcolepsy-related hypersomnia and cataplexy. However, in a study of more than 500 patients with fibromyalgia syndrome and chronic pain, sodium oxybate 4.5 or 6 g taken nightly significantly reduced pain by >30% in most patients and by >50% in nearly half of patients. This degree of pain relief is equal to or greater than that provided by the 3 FDA-approved medications for fibromyalgia: pregabalin, duloxetine, and milnacipran. Moreover, the added benefit of sodium oxybate for sleep and fatigue shown in the study is not seen with gabapentinoids or SNRIs.

Adverse effects of sodium oxybate include slower breathing, confusion, depression, edema, dizziness, vomiting, bedwetting, and sleepwalking. Avoid giving sodium oxybate to patients with a history of deep sleep parasomnias, such as sleepwalking or night terrors. Also, patients with heart failure and hypertension are not good candidates for the sodium oxybate because it has a high salt content; the typical dosage contains several grams of sodium.

References

Both deep sleep and REM sleep appear helpful in “resetting” pain thresholds.

